Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454608

RESUMO

Photo-catalysts based on titanium dioxide, and modified with highly dispersed metallic nanoparticles of Au, Ag, Pd and Pt, either mono- or bi-metallic, have been analyzed by multiple characterization techniques, including XRD, XPS, SEM, EDX, UV-Vis and N2 adsorption/desorption. Mono-metallic photo-catalysts were prepared by wet impregnation, while bi-metallic photocatalysts were obtained via deposition-precipitation (DP). The relationship between the physico-chemical properties and the catalyst's behavior for various photo-synthetic processes, such as carbon dioxide photo-reduction to liquid products and glucose photo-reforming to hydrogen have been investigated. Among the tested materials, the catalysts containing platinum alone (i.e., 0.1 mol% Pt/TiO2) or bi-metallic gold-containing materials (e.g., 1 wt% (AuxAgy)/TiO2 and 1 wt% (AuxPtz)/TiO2) showed the highest activity, presenting the best results in terms of productivity and conversion for both applications. The textural, structural and morphological properties of the different samples being very similar, the main parameters to improve performance were function of the metal as electron sink, together with optoelectronic properties. The high activity in both applications was related to the low band gap, that allows harvesting more energy from a polychromatic light source with respect to the bare TiO2. Overall, high selectivity and productivity were achieved with respect to most literature data.

2.
Ind Eng Chem Res ; 61(8): 2963-2972, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35264822

RESUMO

The CO2 photoreduction is a promising way to convert one of the most abundant greenhouse gases to valuable chemicals. The photoreduction in the liquid phase is limited by the low solubility of CO2 in water, but this point is overcome here by using an innovative photoreactor, which allows one to work up to pressures of 20 bar, improving the overall productivity. The photoreduction was performed in the presence of Na2SO3 and using in primis commercial titanium dioxide (P25) and a set of titania catalysts functionalized by surface deposition of either monometallic or bimetallic cocatalysts. The gaseous products were hydrogen and traces of CO, while, in the liquid phase, formic acid/formate, formaldehyde and methanol were quantitatively detected. The pH was observed to shift the products distribution. A neutral environment led mainly to hydrogen and methanol, while, at pH 14, formate was the most abundant compound. The trend for monometallic cocatalysts showed enhanced productivity when using noble metals (i.e., gold and platinum). In order to limit the cost of the catalytic material, bimetallic cocatalysts were explored, adding titania with Au+Ag or Au+Pt. This may open to the possibility of performing the reaction with a smaller amount of the most expensive metals. In the end, we have expressed some conclusions on the cost of the photocatalysts here employed, to support the overall feasibility assessment of the process.

3.
J Hazard Mater ; 421: 126792, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396965

RESUMO

Over more than three decades, the field of engineering of photocatalytic materials with unique properties and enhanced performance has received a huge attention. In this regard, different classes of materials were fabricated and used for different photocatalytic applications. Among these materials, recently multifunctional XTiO3 perovskites have drawn outstanding interest towards environmental remediation and energy conversion thanks to their unique structural, optical, physiochemical, electrical and thermal characteristics. XTiO3 perovskites are able to initiate different surface catalytic reactions. Under ultrasonic vibration or heating, XTiO3 perovskites can induce piezo-catalytic reactions due to the titling of their conduction and valence bands, resulting in the formation of separated charge carriers in the medium. In addition, under light irradiation, XTiO3 perovskites are considered as a new class of photocatalysts for environmental and energy related applications. Herein, we addressed the recent advances on variously synthesized, doped and formulated XTiO3 perovskite-type oxides showing piezo- and/or photocatalytic exploitation in environmental remediation and energy conversion. The control of structural crystallite size and phase, conductivity, morphology, oxygen vacancy control, doping agents and ratio has a significant role on the photocatalytic and piezocatalytic activities. The different piezo or/and photocatalytic processes mechanistic pathways towards varying applications were discussed. The current challenges facing these materials and future trends were addressed at the end of the review.

4.
Materials (Basel) ; 14(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572587

RESUMO

Flame spray pyrolysis was used to produce nanosized Ni-based catalysts starting from different mixed oxides. LaNiO3 and CeNiO3 were used as base materials and the formulation was varied by mixing them or incorporating variable amounts of ZrO2 or SrO during the synthesis. The catalysts were tested for the steam reforming of glycerol. One of the key problems for this application is the resistance to deactivation by sintering and coking, which may be increased by (1) improving Ni dispersion through the production of a Ni-La or Ni-Ce mixed oxide precursor, and then reduced; (2) using an oxide as ZrO2, which established a strong interaction with Ni and possesses high thermal resistance; (3) decreasing the surface acidity of ZrO2 through a basic promoter/support, such as La2O3; and (4) adding a promoter/support with very high oxygen mobility such as CeO2. A further key feature is the use of a high temperature synthesis, such as flame spray pyrolysis, to improve the overall thermal resistance of the oxides. These strategies proved effective to obtain active and stable catalysts at least for 20 h on stream with very limited coke formation.

5.
Materials (Basel) ; 12(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884805

RESUMO

The deposition of V-based catalysts for the oxidative dehydrogenation of propane to propene on cordierite honeycomb monoliths was optimised as a strategy to decrease the contact time in a structured reactor with respect to a conventional fixed bed one. 10 wt% VOx supported over SiO2 or Al2O3 were used as catalysts, deposed over the monolith using silica or alumina as primer, respectively. Both the alumina supported catalyst and the bohemite primer precursor were effectively deposed by dip-coating from stable powder suspensions, whereas insufficient adhesion was obtained when loading pre-synthesised SiO2 over the cordierite. A new method based on sol-gel production of SiO2 from tetraethylortosilicate (TEOS) over the monolith surface was set up. A correlation was derived for the prevision of the amount of silica deposed depending on the amount of TEOS. Both primer and catalyst loading were optimised as for uniformity and stability of the coating and resulted 0.5⁻1 wt % primer and 0.15 wt % of catalyst. Activity testing confirmed the strong improvement of propene productivity by increasing the time factor (i.e. Ncm³ of flowing reactant/min gcat), which ended in a one order of magnitude increase of productivity for the honeycomb-supported samples with respect to the fixed bed configuration.

6.
Phys Chem Chem Phys ; 15(39): 16779-87, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23995512

RESUMO

Methods and models describing oxygen diffusion and desorption in oxides have been developed for slightly defective and well crystallised bulky materials. Does nanostructuring change the mechanism of oxygen mobility? In such a case, models should be properly checked and adapted to take into account new material properties. In order to do so, temperature programmed oxygen desorption and thermogravimetric analysis, either in isothermal or ramp mode, have been used to investigate some nanostructured La1-xAxMnO3±Î´ samples (A = Sr and Ce, 20-60 nm particle size) with perovskite-like structure. The experimental data have been elaborated by means of different models to define a set of kinetic parameters able to describe oxygen release properties and oxygen diffusion through the bulk. Different rate-determining steps have been identified, depending on the temperature range and oxygen depletion of the material. In particular, oxygen diffusion was shown to be rate-limiting at low temperature and at low defect concentration, whereas oxygen recombination at the surface seems to be the rate-controlling step at high temperature. However, the oxygen recombination step is characterised by an activation energy much lower than that for diffusion. In the present paper oxygen transport in nanosized materials is quantified by making use of widely diffused experimental techniques and by critically adapting to nanoparticles suitably chosen models developed for bulk materials.

7.
Inorg Chem ; 51(21): 11680-7, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23039114

RESUMO

LaMnO(3), either pure or doped with 10 mol % Sr, has been prepared by flame pyrolysis in nanostructured form. Such catalysts have been tested for the catalytic flameless combustion of methane, achieving very high catalytic activity. The resistance toward poisoning by some model N-containing impurities has been checked in order to assess the possibility of operating the flameless catalytic combustion with biogas, possibly contaminated by S- or N-based compounds. This would be a significant improvement from the environmental point of view because the application of catalytic combustion to gas turbines would couple improved energy conversion efficiency and negligible noxious emissions, while the use of biogas would open the way to energy production from a renewable source by means of very efficient technologies. A different behavior has been observed for the two catalysts; namely, the undoped sample was more or less heavily poisoned, whereas the Sr-doped sample showed slightly increasing activity upon dosage of N-containing compounds. A possible reaction mechanism has been suggested, based on the initial oxidation of the organic backbone, with the formation of NO. The latter may adsorb more or less strongly depending on the availability of surface oxygen vacancies (i.e., depending on doping). Decomposition of NO may leave additional activated oxygen species on the surface, available for low-temperature methane oxidation and so improving the catalytic performance.

8.
Inorg Chem ; 51(15): 8433-40, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22799746

RESUMO

The physical-chemical properties of some nanostructured perovskite-like catalysts of general formula La(1-x)M(x)MnO(3+δ) (M = Ce, Sr) have been investigated, in particular by using the electron paramagnetic resonance (EPR) technique. We show that the interplay between the -O-Mn(3+)-O-Mn(4+)-O- electron double-exchange and the electron mobility is strictly dependent on the dopant nature and the annealing conditions in air. A relationship between the observed properties of these samples and their activity in the methane flameless catalytic combustion is proposed.

9.
Inorg Chem ; 50(8): 3757-65, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21434615

RESUMO

We present here a X-ray absorption spectroscopy (XAS) investigation on the local chemical order and electronic structure of Cs and Ba, promoters of the Ru/C catalysts for ammonia synthesis that attracted interest because of highly increased productivity. The role of the promoters is still largely unclear, although indirect evidence for Cs partial reduction has been obtained by this and other groups. Our XAS analysis with in situ H(2) reduction directly supports the partial Cs reduction in the promoted Ru/C catalysts, depending on the presence of Ru and on the graphitization degree of the support. Higher coordination of Ba was observed with respect to Cs in the reduced samples, without evidence of heavy atoms (Ru, Cs, and Ba) in the surroundings. Because of the strong electropositive nature of Cs, direct experimental evidence of its partial reduction is of outstanding significance also for other applications.

10.
Chem Commun (Camb) ; (47): 5022-4, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18049740

RESUMO

A two-compartment Plexiglas cell has been set up and tested for separate hydrogen and oxygen production from photocatalytic water splitting on a thin TiO2 layer deposited by magnetron sputtering on a flat Ti electrode inserted between the two cell compartments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...